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We model discrete spatial solitons in a periodic nonlinear medium encompassing any degree of transverse
nonlocality. Making a convenient reference to a widely used material—nematic liquid crystals—we derive a
form of the discrete nonlinear Schrödinger equation and find a family of discrete solitons. Such self-localized
solutions in optical lattices can exist with an arbitrary degree of imprinted chirp and have breathing character.
We verify numerically that both local and nonlocal discrete light propagation and solitons can be observed in
liquid crystalline arrays.
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I. INTRODUCTION

Optical energy localization in lattices has become an im-
portant branch of contemporary nonlinear science, due to a
wealth of basic physics and potentials for light switching and
logics �1–3� �and references therein�. Attention has been re-
cently devoted to light propagation in the frame of tunable
discreteness, i.e., in lattices with an adjustable period, index
contrast, nonlinearity. Examples to this extent are waveguide
arrays in photorefractives �1�, and droplet arrays of a Bose
Einstein condensate �4–7�. In nematic liquid crystals �NLC�,
materials encompassing a large nonresonant reorientational
response, spectrally extended transparency, strong birefrin-
gence, and mature technology �8�, excitation as well as
switching/steering of discrete solitons has been reported in
voltage-tunable geometries �9–11�. Discrete solitons in NLC
result from the interplay between evanescent coupling �ow-
ing to discreteness�, molecular nonlinearity �leading to pro-
gressive mismatch as the extraordinary index increases�, and
nonlocality �owing to intermolecular elastic forces�. The lat-
ter aspect, despite its role in several systems �12–22� includ-
ing NLC �23,24�, has only been discussed in the framework
of one-dimensional �1D� discrete lattices, with reference to
first order contributions �20� and long range dispersive inter-
actions �19,21,22�. A general description of discrete solitons
in the presence of a transverse nonlinear nonlocality is still
lacking.

In this paper, with explicit reference to a physical system
of interest—i.e., nematic liquid crystals—we model discrete
light localization in media with an arbitrary degree of non-
locality, elucidating the interplay between nonlocality and
nonlinearity on soliton dynamics. Using coupled mode
theory �CMT� to derive the governing equations �25�, we
demonstrate the existence of a family of chirp-imprinted dis-
crete breathers which could not be sustained by a purely
local response. Finally, we verify the theoretical predictions
by numerical experiments with a standard NLC. The paper is
organized as follows. Section II introduces a model of liquid

crystals and carries out an original reduction to a noninte-
grable discrete nonlinear nonlocal Schrödinger equation, out-
lining the novelties with respect to previous studies dealing
with nonlocality. In Sec. III we apply a variational approach
using a convenient soliton ansatz and derive the differential
equations for the evolution of soliton parameters in propaga-
tion. We highlight the impact of nonlocality on soliton gen-
eration and introduce a family of discrete chirped solitary
waves. Finally, in Sec. IV, we perform a full numerical simu-
lation of the actual liquid crystalline system and demonstrate
the excellent agreement with our analytical predictions. We
conclude by emphasizing how the examined NLC lattice of-
fers the rare possibility to observe both local and nonlocal
light propagation in one and the same system.

II. THEORETICAL APPROACH

We consider light propagation in a thin film planar wave-
guide of nematic liquid crystals, subject to a periodic trans-
verse modulation along y and across x �Fig. 1�. NLC consist
of rodlike molecules which, electrically polarized across x,
react to and reorient toward the field vector in order to mini-
mize the free energy �8�. Under “planar” anchoring condi-
tions at top and bottom interfaces of the cell, the mean an-
gular orientation of the NLC molecules �i.e., the molecular
director� is conveniently described by their angle � with the
axis z in the plane �x ,z�, as sketched in Fig. 1. This identifies
the NLC optic axis with respect to the propagation wave
vector of a light beam injected in the cell. If na

2=n�
2−n�

2 is
the NLC optical birefringence �with n� and n� along or
orthogonal to the director, respectively�, an electric field
�static or low frequency� applied across x, constant in z
and periodic along y �Fig. 1�, can reorient the director and
determine a one-dimensional optical lattice with index
modulation n2�x ,y�=n�

2 +na
2sin2��x ,y� for e-polarized light.

We assume an applied electric field Ex�x ,y�=E0�1+�F�y�,
with a zero mean-value F�y�=F�y+�� and an arbitrary
��1. In actual experiments, Ex is determined by the bias
V�x ,y��x�1+V�y��, with V�y�=V�y+�� applied through an
array of parallel finger-electrodes �9�.

In the framework of the elastic continuum theory �8�, the
director distribution �0�x ,y� at rest—i.e., with no injected
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light—can be obtained by minimizing the NLC energy func-
tional:

K�xy
2 �0 +

��RF�Ex�2

2
sin�2�0� = 0, �1�

K being the NLC elastic constant �single constant approxi-
mation �8�� and ��RF the �low frequency� anisotropy. When
an e-polarized optical beam of slowly varying envelope A
propagates in the medium, Eq. �1� modifies into

K�xy
2 � + ���RF�Ex�2

2
+

na
2�0�A�2

4
	sin�2�� = 0. �2�

The overall director distribution can be written as ��x ,y�
=�0�x ,y��1+��x ,y��, with �0�x ,y���x ,y� the nonlinear opti-
cal contribution. In usual experiments �0 is small ��0.4�,
hence first order approximations are justified �9�. The nonlo-
cality �linked to the � operator in Eqs. �1� and �2�� has a
different impact along x and y, respectively, due to the strong
asymmetry of the problem �Fig. 1�. A bell-shaped beam with
an x waist comparable with the cell thickness d does not
experience a nonlocal response along x, owing to the planar
anchoring with �0
0 in x= ±d /2. Conversely, along y no
anchoring is present and the index perturbation is free to
widen. After substituting � into Eqs. �1� and �2�, assuming
the response to be weakly nonlinear ��	1� and local in
x ��x

2��0��
0�, we obtain

�2�

�y2 +
2

�0

��0

�y

��

�y
−

4��RF�Ex�2�0
2

3K
� +

na
2�0�A�2

2K
= 0. �3�

Equation �3� models the all-optical response of the NLC lat-
tice. It can be cast in the integral form �=��G�
−x ,�
−y��A�
 ,���2d
d�, with G�x ,y� the Green’s function. For a
sufficient bias to induce an array of single-mode channel
waveguides with nearest-neighbor coupling, CMT �in the
tight-binding approximation� yields the z evolution of each
eigenmode

i
�Qn

�z
+ C�Qn+1 + Qn−1� + Qn�

m

�m,n�Qm�2 = 0, �4�

with A=�nQn�z�fQ�x ,y�exp�−i
z�, fQ and 
 the modal
eigenfunction and eigenvalue, respectively, �Qn�2 the mode
power in the nth channel, C the coupling strength, and

�m,n =
��0

4

 �fQ�x,y − n���2n2,��x,y�G�
 − x,� − y�

��fQ�
,� − m���2dxdyd
d� �5�

the nonlinear overlap integral, with n2,��x ,y�
=na

2sin�2�0��0 /2n��0�. Factorizing the Green’s function as
G�x ,y�=G�x�Gp�y�Ge�y�, with Gp�y�=Gp�y+�� and the en-
velope Ge�y� wider than the guided mode, the integral �5�
becomes �m+n=Ge��m+n����, with

� =
��0

4

 �fQ�x,y��2n2,��x,y�G�
 − x�Gp�� − y�

��fQ�
,���2dxdyd
d� . �6�

To proceed with the analysis, we need to calculate the
Green’s function from Eqs. �1� and �3�. By setting �x ,y�
= �Xd ,Y��, �0=�r��X ,Y�, ��0,0�=1, �=1/ �k0

2na
2�2�

���X ,Y�, A2=8/�3����RFKE0 /�0k0
2na

4�r
2�3�a2�X ,Y�, �

=��g�
−X ,�−Y� /��
−X ,�−Y��a�
 ,���2d
d� �scaling g
to � prevents first order derivatives to appear in Eq. �8��,
F= �4�r

2 /3��f�Y�, �=�2 /Rc
2, Rc

2=3K /4��RFE0
2�r

2, 
=�2 /d2,
and ����= ��+��4�r

2f /3���2+�2� /�Y2�, Eq. �3� with Eq. �1�
can be cast in the dimensionless form

�2�

�Y2 + 

�2�

�X2 + � 3

4�r
2� + �f	� = 0, �7�

�2g

�Y2 − ����g + 2��u0 = 0. �8�

In order to solve Eq. �7� above, we separate the variables X
and Y by letting 3� /4�r

2=�x+�y and obtain a simple form of
Hill’s equation in Y

d2�

dY2 + ��y + �f�� = 0 �9�

with ��X ,Y�=��X���Y� and ��X��sin��X+� /2� corre-
sponding to a harmonic oscillator across X. According to
Floquet theory, the periodic solutions ��Y�=��Y +1� are lo-
cated on a transition curve �26�. We adopt the perturbative
method of strained parameters �26,27�, performing the ex-
pansion:

� = �
m

�m�m�Y� , �10�

FIG. 1. Example of a discrete optical lattice in
a cell of thickness d filled with undoped nematic
liquid crystals: �a� front view; �b� side view. A
periodically varying electric field Ex is applied
through an electrode array across x and alters the
mean molecular angular orientation ��x ,y�, in-
ducing an index modulation with the same period
�. The top graphs sketch the distribution Ex ver-
sus y �left� and versus propagation z �right�,
respectively.
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�y = �
m

�m�y0,

with �m�Y�=�m�Y +1�. By collecting and equating terms of
the same order in �, we find

��0�Y�2

�Y2 = 0 O�1� , �11�

��1�Y�2

�Y2 = − �y1�0 − f�0 O��� , �12�

��2�Y�2

�Y2 = − �y2�0 − �y1�1 − f�1 O��2� . �13�

By expanding f�Y� in a Fourier basis
f =�m�mexp�−i2�mY�, we obtain the solution to Eqs.
�11�–�13�

� = 1 + �
m

�m�m�Y� = 1 + ��
m

�m

4�2m2exp�− i2�mY� + O��2� ,

�14�

�y = − �2
 �1�Y�f�Y�dY + O��3� . �15�

Substituting Eq. �14� into Eq. �8�, for ��X�
constant within
the effective modal width, we get

�2g

�Y2 − �� + �
m

�mhm�Y��g + 2��u0 = 0 �16�

with g�X ,Y�=u0�X�g�Y�, h1= f�Y���4�r
2 /3�− �1/��Y���

+2��1�Y� and a periodic hm�Y�=hm�Y +1� the expression of
which stems from Eqs. �11�–�14�. For u0=0, Eq. �16� is
Hill’s equation; otherwise for u0�0 its solutions can be
found through the expansion

g�Y� = �
m

�mgm�Y� . �17�

Substituting and equating terms of the same order in �, we
have

�g0
2

�Y2 − �g0 + 2��u0 = 0 O�1� , �18�

�g1
2

�Y2 − �g1 = h1g0 O��� , �19�

�g2
2

�Y2 − �g2 = h1g1 + h2g0 O��2� . �20�

At each order the solution can be factorized in the form
g�Y�=ge�Y�gpn�Y�, i.e., an envelope ge�Y� modulated by the
periodic function gpn�Y�=gpn�Y +1�, with

ge�Y� = exp�− ���Y�� ,

gp0 = 1,

gp1�Y� = − �
m

h1m

4m�� + m2�2��m + 3m exp�− i2�mY�

+
2 sign�Y�

���
exp�− i�mY�sin�m�Y�� . �21�

Therefore, the generic solution g�Y� can be written in the
form gn�Y�=ge�Y�gp�Y�, with a peaked envelope ge�Y� and
a periodic modulation gp�Y�=�n�ngpn. Now, after introduc-
ing the �dimensionless� fields qn=Qn�� coth�� /2� /2C
�exp�−i2�� with �=Cz and the degree of �non�locality �

=��, by substituting Eqs. �21� in Eq. �4� we finally obtain
the discrete nonlocal nonlinear Schrödinger equation

i
�qn

��
+ �qn+1 + qn−1 − 2qn� + 2qn�

m

exp�− ��m + n��
coth�/2

�qm�2 = 0.

�22�

Equation �22� is a discrete version of the nonlocal nonlinear
Schrödinger equation �NNLS� �18� and reduces to the
discrete nonlinear Schrödinger equation �DNLS� �28� as
�→�. At variance with previous work dealing with nonlo-
cality in dispersion �a linear property of the medium�
�19,21,22�, Eqs. �22� address a nonlinear feature �nonlocality
in the nonlinear response� and, thereby, are expected to pos-
sess a radically distinct dynamics with respect to their linear
counterpart �see Sec. III� and to nonlocal models in the frame
of nonlinear photonic crystals ��15� and references therein�.
The lack of propagation terms in Eqs. �8� and �9� of �15�, for
instance, does not allow to study the system evolution �as
investigated hereby�. Hence, Eqs. �22� can be regarded as
a general model of discrete, dispersive, nonlinear nonlocal
media.

FIG. 2. �a� Power W0 of discrete soliton versus size � for in-
creasing � �decreasing nonlocality� up to the local Kerr case �thick
line�, �b�–�d� phase planes of soliton chirp b and width � for vari-
ous � in the case �=1.5.
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III. ANALYSIS OF THE DISCRETE MODEL

Equation �22� can also be derived using the variational
principle and the following Lagrangian L:

L = �
n

i

2
�qn

*�qn

��
− qn

�qn
*

��
	 − �qn+1 − qn�2

+ �
m

exp�− ��m + n��

coth
�

2

�qm�2�qn�2. �23�

We adopt the peaked ansatz qn���=Aq���exp�i����+ ib����n
−n0�−�����n−n0�� with n0=0, obtaining the effective La-
grangian Leff

Leff = Aq
2�−

��

��
coth � −

1

2

�b

��

1

sinh �
− 2 coth �

+ 2
cos b

sinh �
+ Aq

2N��,��� �24�

with nonlocal contribution N�� ,��

N��,�� =
1

Aq
4�

m,n

exp�− ��m + n��
coth��/2�

�qm�2�qn�2

=
tanh��/2��2 sinh 2� + sinh � + sinh�4� + ���

4 sinh 2� sin2�� + �/2�
�25�

as calculated with a bilateral Z–transform. Setting to zero
each variational derivative of soliton parameters
�Aq ,� ,b ,��, we obtain the evolution of both soliton chirp b
and soliton width �. After some algebra

�b

��
=

4 cos b sinh3�

cosh 2�

− W0

sinh2��4N��,��tanh � + 2 sinh2�
�N��,��

��
�

cosh 2�
,

�26�

��

��
= −

4 cosh � sin b sinh2�

cosh�2��
, �27�

with the soliton power W0=�n�qn�2=Aq
2coth �. Equations

�26� and �27� define a two-dimensional phase space with the
conserved Hamiltonian Heff

Heff = − W0�− 2 + 2 cos b sech � + W0
tanh��/2�tanh2��2 sinh 2� + sinh � + sinh�4� + ���

4 sinh 2� sin2�� + �/2� � . �28�

Solitons correspond to stationary points of Eqs. �26� and �27�
with b=0 and

W0 =

8 cosh2� cosh
�

2

3 sinh2�

2

�

sinh � sinh3�� +
�

2
	

�sinh � + sinh�3� + ���− 1 + 2 cosh 2���
.

�29�

Since ��W0�� ,�� /����0, all fixed points representing soli-
tons are stable �28�. As shown in Fig. 2�a�, the existence
curve �29� of discrete solitons rapidly approaches the local
Kerr case for diminishing nonlocality �i.e., increasing ��3�.
As nonlocality is enhanced and � reduces toward and below
1, however, the refractive perturbation becomes broader and
broader �in y� and W0 larger and larger. Substantial changes
are visible near the soliton solution, as displayed in the phase
plane �29� of Eqs. �26� and �27� in Figs. 2�b�–2�d�. In a Kerr
regime ��→�� the phase plane consists of a series of peri-

odic orbits near the localized state ��=1.5, b=0� and � tends
to zero for higher chirps b �Fig. 2�b��. Therefore, the addition
of an initial chirp above a certain value—i.e., enough chirp
imprinting—destroys the soliton �5,30,31�. The situation
keeps unchanged as ��3 �Fig. 2�c��. In the nonlocal regime
��=1.0�, conversely, the trajectories evolve from a closed
loop to a limit cycle, hence no chirp imprinting can break the
soliton �Fig. 2�d��. This remarkable finding is confirmed by
numerical simulations, as visible in Fig. 3. While a local
system cannot sustain discrete light localization with an in-
put spatial chirp above a threshold �Fig. 3�a��, nonlocality
allows for the propagation of chirped discrete solitary waves

FIG. 3. �a� Discrete soliton breaking in a quasilocal regime
��=3.0� and �b� breatherlike propagation in the nonlocal regime
��=1.0� for �=1.5 and an imprinted chirp b=3.
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�Fig. 3�b�� with periodically varying width, as predicted by
our model. Clearly, the soliton amplitude oscillates as well in
order to conserve the total power W0. These solutions belong
to the class of discrete breathers and are the lattice counter-
parts of the continuously breathing solitons reported in
highly nonlocal bulk NLC �24�.

IV. NUMERICAL EXPERIMENTS WITH THE NLC
LATTICE

In order to link the analysis to an actual NLC lattice, we
need to estimate the range of available �. As it stems from
the model above, the nonlinear index change has a peaked
envelope of transverse size �= ��Rc ��V /�Kd �being
Ex�x�
V /d and �r
const� and, therefore, nonlocality can
be tuned by acting on either one of the form-factor � /d, the
bias V, the elastic constant K, or the temperature �32�. With
reference to a standard NLC �nematic 5CB, with K=3.8
�10−12 N�, in order to evaluate the Green’s function along Y
we employed an optical � =1.064 �m� excitation A�x ,y�
consisting of a Dirac distribution across y and a Gaussian
beam of waist 
d across x. We numerically integrated Eqs.
�1� and �2� using the relevant potential distribution �see Ref.
�10��, and finally derived the size � versus !��V /�Kd by
fitting the calculated reorientation profile. As the material is
tuned from local �Fig. 4�a� with d /�=0.44, V=0.78 V� to
nonlocal �Fig. 4�b� with d /�=1.0, V=0.75 V�, the Green’s
function envelope of the nonlinear reorientation along y
�solid line� is well approximated by our theoretical model
�dashed line�. In the latter analysis we employ both geomet-
ric �d /�� and material �V� tuning, slightly adjusting the bias
to keep �r
0.35. This results in a quasilinear transition �see
Fig. 4�c�� from a local to a nonlocal response as ! varies.
The corresponding transverse size of the nonlocal response,
represented by dots in Fig. 4�c�, shows that theory and nu-
merics are in excellent agreement in the range covering local
��=3.0� to nonlocal ��=1.0� responses. Moreover, the all-
optical reorientation across x, visible in Fig. 4�d�, is nearly
sinusoidal �dashed line� and does not widen significantly
when the nonlinearity intervenes �solid line�, supporting the
validity of the local approximation previously adopted.

V. CONCLUSIONS

In conclusion, with specific reference to nematic liquid
crystals and their reorientational response, we have modeled

discrete light localization in a nonlinear medium with an
arbitrary degree of transverse nonlocality. Starting from the
governing equation of the liquid crystalline system, we per-
formed an original reduction to a general form of discrete
nonlinear nonlocal Schrödinger equation. Remarkably, the
latter result was not achieved by introducing an a priori spe-
cific from of nonlocality �18–22�, but one derived from the
molecular response of NLC. We employed a variational pro-
cedure and investigated the role of nonlocality in supporting
chirp-imprinted discrete spatial solitons. Such solutions are
periodic breathers and cannot exist in purely local systems.
Since the degree of nonlocality in NLC arrays can be ad-
justed by acting on geometric or material or external param-
eters �32�, we anticipate that our findings will trigger the
observation of discrete light propagation in both local and
nonlocal regimes in one and the same system. Our numerical
experiments, in excellent agreement with the theoretical pre-
dictions, fully support such a possibility.
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